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Ph.D. student in the Department of Statistics at Stanford working under
the supervisfon of the firsi author, Herman Chernoff. The techniques
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1. INTRODUCTION

A natural formulation for many statistical problems is one combining Bayesian,
sequential and decision-theoretic aspects. For the problem of deciding the sign
of a normal mean, Chernoff (1961, 1965a, 1965b), Breakwell & Chernoff (1964) and
Bather (1962) develop an approach to such a formulation where sums of successive
observations are replaced by a continuous time Wiener process. Subsequently,
this approach has been employed by Chernoff & Ray (1965), Chernoff (1967), Bather
& Chernoff (1967a, 1967b), Feder & Stroud (1971}, Petkau (1978), and Chernoff &
Petkau (1981) in a wide variety of problems.

The continuous time prbb]em has a number of fundamental advantages ovér the
discrete time problem for which it is an approximation. First, the continuous
time problem can be normalized so that many of the parameters which appear in
the original (discrete time) problem are eliminated; thus, a single continuous
time problem corresponds to an entire class:of discrete time problems. Second,
the continous time problem is equivalent to an optimal stopping problem for a
Wiener process where.the cost associated with stopping depends only on the
stopping point; any such problem 1s related to a problem in analysis, a free
boundary problem (FBP) fnvolving the heat equatfon. This relationship
facilitates obtaining bounds and asymptotic approximations for the solution
of the continuous time problem.

While these bounds and asymptotic approximations provide valuable insight,
in mos} problems they do not provide an adequate approximation to the solution.
Techniques are }equired which will provide numerical descriptions of the solution
of the continuous time problem; this solution will then provide approximations

to the solutions of an entire class of discrete time problems.



In this paper we will describe simple numerical techniques which can be
easily employed to obtain explicit descriptions of .the solutions of such
continuous time problems. The basic idea is straightforward: the Wiener process
is approximated by a discrete time process and backward induction is emgloyed
to solve the optimal stopping problem for this new process. The techniques will
be illustrated in a number of problems thereby clearly indicating their
properties. Some of these problems have and some have not been
previously investigated in the literature.

The reader may feel that the path that has just been traced is somewhat
circular. We begin with a discrete time Bayes sequential decision (optimal
stopping) probiem which can be solved by backward induction and approximate it by a

continuous time optimal stopping problem for a Wiener process which we propose to

solve by applying backward induction to a discrete time version of the Wiener process.

However, the situation is not quite so empty. First, as already indicated, the
continuous time problem ailows one to derive valuable characteristics of the
solution inciuding asymptotic approximations. Second, there are available
excellent approximations to the difference between the solution of the continuous
time problem and those of its various discrete time versions. Thus, we can solve
the optimal stopping problem for a particular discrete time version and use the
solution, properly adjusted, to approximate that of the continuous time problem.
This approximation can then itself be adjusted further to approximate the solution
of any of the original discrete time probiems, Thus, the single backward
induction applied to the discrete time version of the Wiener process provides
solutions for the normalized continuous time problem and all of its discrete time
versions.

In this paper we will focus on obtaining numerical solutions for continuous

time problems. The question of whether these continuous time solutions, when

properly adjusted, yield accurate approximations to the solutions of the original
discrete time problems must be considered on a problem-by-problem basis. We
merely mention here that this quest}on has been considered in detail for a
problem invelving Bernoulli data by Petkau (1978) and for a different problem
involving normal data by Chernoff and Petkau (1981); in both cases, the adjusted

continuous time solutfons provided accurate approximations to the solutions of the

original discrete time problems.



2. PROBLEMS UNDER INVESTIGATION

The techniques to be described can be applied to obtain a numerical

description of the solution of our special class of optimal stopping
problems involving zero drift Wiener processes. With one exception, the
normalized forms of the continuous time Bayes sequentfal decision
problems to be considered in this paper are special cases of the
following optimal stopping problem: Given a Wiener process {Y({s): s z_s]] in the
-s scale, described by E(dY(s)} = 0 and Var{dY(s)} = -ds and starting at
Y(so) = ¥ (s0 > s]), find a stopping time S to minimize the risk, E{d(Y(S).S)):
here d(y,s) s the cost associated with stopping at the point (y,s) and stopping
is enforced at the end of the problem, namely, when s = Sy

Some characteristics of the solution of such an optimal stopping problem
can now be described. If we define a(yo.so) = inf b(yo.so). where b(yo.so) is
the risk associated with a particular stopping time (procedure) and the infimum
is taken over all procedures, then since Y(s) is a process of independent
increments, a(y.s) represents the best that can be achieved once (y,s) has been
reached, irrespective 'of how it was reached. Thus, the rule "Stop as soon as
a(Y(s).s) = d(Y¥(s),s)," which yields an optimal procedure if one exists, can be
described by the continuation set C = {(y,s): a(y.s) < d(y,s)} or by its complement,
the stopping set § = €% = {(y,s): a(y.s) = d(y,s)); attention can therefore be
restricted to procedures which can be so described. Note that this character-
ization does not depend upon the initial point (yo.so) and thus yields the
solution for all initial points simultaneously. Chernoff (1968, 1972) has
demonstrated that one should expect the solution (&.C) of the stopping problem
to be a solution of the following free boundary problem (FBP) involving the heat

equation (aC denotes the boundary of the set ¢):

¥d, (yis) = dily.s)  for (y.s) e,

(2.1) dly,s) = d(y.s) for {y,s) ¢S,

ay(y.s) - dy(y.s) for (y.s) ¢ aC ;

this relationship enables one to obtain bounds and asymptotic approximations for

the solution. One particular result is that for any such stopping problem one

should never stop at points (y,s) where H(y,s) = kdyy(y.s) - ds(y.s) < 0; if one

thinks of the optimal stopping problem as a gambling problem, then H(y,s) can be

heuristically thought of as the “rate of losing® at the point (y,s). Further, it

1s obvious from (2.1) that changing the stopping cost function d(y,s) by adding

to i1t any solution of the heat equation leaves the solution S of the FBP unchanged.
Some specfal cases of this general optimal stoppipg problem which have

already been fnvestigated in the l{terature are now described.

Example 2.1. Testing for the sign of a normal mean, Chernoff (1961). X‘. XZ' ».

are independent N(u,02) random variables (o? known). It is desired to test
Hl:" > 0 versus HZ:u < 0, where the cost of a wrong decisfon is kju| and the
cost of observing n X's is cn. If the parameter u is assumed to have a normal
prior, what 1s the Bayes sequential strategy? A normalized form of the
continuous time version of this problem 1s a special case of the general
stopping problem formulated above with

(2.2) dly.s) =s"! +H Y(ylsk) for s >0

here



v(x) = ¢(x) - x{1 - #(x)} for xAi 0,

(2.3) .
= y(-x) for x <0,

while ¢ and ¢ are the standard normal density and cumulative respectively. For
further detail, the reader is referred to Chernoff (1961, }965a. 1965b, 1972),
Breakwell & Chernoff (1964) and Bather (1962). Closely related work appears in
Lindley (1961), Moriguti & Robbins (1962) and Lindley & Barnett (1965). We will

refer to this problem as the sequential analysis probiem.

Example 2.2. One-armed bandit problem, Chernoff & Ray (1965). X]. Koueees Xn are

independent N(u,0?) random variables (o2 known). .The payoff for stopping at n <N
is X] + X2 00 Xn‘ When p has a normal prior, the normalized continuous time

version leads to the special case

(2.4) dly,s) = -y/s for s > 1

The variation where X1 is either a or b with unknown probabilities p and 1 - p and
p has a beta prior is ;elevant to (a) a one-armed bandit problem with a limited
number of pulls available, (b) the rectified sampling inspection problem in which
context this problem first appeared, and (c) clinical trials comparing a new
treatment against a known one with a finite horizon of patients t? be treated,

Chernoff (1967). For discussion of the continuous time versfon, see Chernoff
(1967,1972).

Example 2.3. Sequential medical trials involving paired data, Anscombe (1963).

There 1s a horizon of N patients to be treated with one of two available treatments.

In the initial {experimental) phase, n pairs of patients are treated sequentially -
with different treatments randomly assigned to-thé patients in each pair; the
remaining N - 2n patients are all assigned to the'treatment which is inferred to

be supertor. The differences in the values of the outcomes for each pair are

independent N(1,02) random varfables (o? known) and the cést of treating any
patient with the inferior treatment is proportional to |u|. If the parameter
u Is assumed to have a normal prior, what is the Bayes sequentfal strategy?
The continuous time version, recently studied in detail by Chernoff & Petkau

(1981), leads to the special case

(2.5) d(y,s) = -(1 - V/s) |yl for s> 1.

Related work appears in Begg & Mehta (1979), Petkau (1980), Lai, Levin,
Robbins & Stegmund (1980) and Lai, Robbins & Siegmund (1983). We will

refer to this problem as the Anscombe problem.

Example 2.4. Sequential medical trials for comparing an experimental with a

standard treatment, Petkau (1978). There is a horizon of N patients to be

treated with either the standard treatment, characterized by a known probability
of success Pg» OF the experimental treatment, characterized by an unknown
probability of success p. Sampling is to be initiated with the experimental
treatment and continued with this treatment during an experimental period until

a decision is made in favor of one of the treatments; the remaining patients

are then treated with the favored treatment. There is a cost incurred for each
unsuccessful application of either treatment as well as a cost of experimentation
which is incurred for each patient treated during the experimental period. If

a beta prior is assumed for the parameter p, what is the optimal design? A
continuous time version of this problem leads to the specfal case (here y is a

normalized cost of experimentation parameter)

d(y,s) = v/s -y for y>0,s>1,

(2.6)

v/s - y/s for y<0,s>1.



The above examples arise naturally in the statistical problems described.
In each case, closed form solutions are unavailable; complete descriptions of
optimal procedures are available only through numerical techniques such as those
to be described. In order. to fully t1lustrate the properties of these numerical
techniques, a problem of the same general form as Examples 2.1 - 2.4 but for
which the solution is available in closed form will be useful. The following

modification of Example 2.3 will serve our purpose.

_Example 2.5. Modified Anscombe problem. This artificial problem corresponds

to the specia) case

(2.7) dly.s) = -(1 - 1/s) |y - 2s"%(y(s)/s™)  fors s,
where ;(s) is defined by

(2.8) V- elyls)s) = sz

It is easily verified (see, for example, Chernoff, 1968, 1972) that the optimal

solution (a,C) for this problem is given by

(ly.s): Iyl <y(s) . s>1),

o
"

(2.9)

a.
[}

-yl - 25;"“()'/5“) for (y,s) ¢ C,
where ¥ is defined in (2.3); of course, d=d for (y,s) e S= Cc.

The statistical problems described above all lead to special cases of the
general optimal stopping problem for a zero drift Wiener process in the (y,s)

scale which was described in the first paragraph of this section. While these

statistical problems will be the main interest in this paper, the techniques

to be described apply equally well to a class of gambling problems, the general
case of which can be described as follows: Given a Wiener process {X(t): t ; t])
in the t scale, described by E{dX(t)) = 0 and Var{dX(t)) = dt and starting at
X(to) = X, (t0 < t]). find a stopping time T to maximize the expected reward
E{g(X(T), T)};: here g(x,t) 1s the reward associated with stopping at the point
{x.t) and stopping is enforced at the end of the problem, namely, when t = ty-
The solution of any such problem will not depend upon the initial point

(xo,to) and we will denote the optimal reward at (x,t) by é(x.t). For a detailed
study of this general problem, the interested reader is referred to Van Moerbeke
(1974a, 1974b, 1975) and Shiryaev (1978). Two results of particular interest

are that the solution of this stopping problem can be represented as the

solution of a free boundary problem for the backward heat equation,

Lu +u

XX t :
g, (x.t) + gt(x.t) > 0; H(x,t) can be thought of as the payoff rate or "rate

= 0, and that one should never stop at points (x.t).where H(x,t) E

of winning" at the point (x,t). Again, changing the stopping reward function
g(x,t) by adding to it any solution of the backward heat equation leaves the
solution S of the FBP unchanged.

It should not be surprising that there is a close relation between this
general optima) stopping prob];m for a zero drift'Hiener process in the (x,t)
scale and the general problem in the (y,s) scale which was defined earlier; a
simple change of variables transforms one into the other (see, for example,
Van Moerbeke, 1974a, p.547). In spite of this close relation, we will prefer
to work with the statistical problems in the (y,s) scale and the gambling
problems in the (x,t) scale since these are the natural scales.

Two special cases of this general optimal stopping problem in the (x,t)

scale will be considered.
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Example 2.6. Van Moerbeke's gambling problem, Van Moerbeke (1974a, 1974b).

A gambler loses an amount of money equal to the amount of time the process spends
fn the region x < 0 and wins an amount of money equal to the amount of time spent
in the region x >0. If the ganbler is permitted to stop the process at any time
t, 0 <t <1, what is the optimal strategy? 0

For this problem, the payoff rate H(x,t) = + 1 depending on whether the
process is in the positive or negative x half-plane; clearly the gambler should

never stop in the win region, x>0. A naive gambler would stop as soon as the

lose region, x < 0, was entered, but it may pay to lose a bit now in the hope

of winning in the more remote future. The reward function described above differs

from

g(x,t) =1 - ¢+ 2x2 for x>0,

(2.10)
=1-1t

for x <0,
by a solution of the backward heat equatfon. Hence this problem 1s equivalent
to the special case with reward function g{x,t). Van Moerbeke has established

that the optimal solution (a.C) for this problem is given by

C=tlxt): x> -a(1- )%, teny,

(2.11) ‘9lxat) = 201 - (1 + w2) + a1 - t) (welw)

= O+ W) - e(w) 1)/ 6(a) for {x,t) ¢ C,

[}
where w = x/(1 - t)? and o = 0.5061 is the solution of adl(a) = ¢(a).

n

Example 2.7. The Sn/n problem with finite horizon . In the infinite horizon

version of this problem a gambler is allowed to view successively as many terms
as he pleases of a sequence Xl. X2. ... of independent random variables with
common distribution F. If upon stopping at time n the ganbler receives a
payoff of Sn/n. where Sn = x] + ...+ Xn, what is the optimal strategy?

This problem was first studied by Chow & Robbins (1965), who proved the
existence of an optimal stopping.rule when F is a two point distribution.
They also proved the intuitively obvious but nontrivial fact that an
optimal rule 1s to stop at the first n at which Snz Bne and provided
a method of calculating the sequence of numbers By in principle. Dvoretsky
(1965) and Teicher & Wolfowitz (1966) proved that the same result holds for

any F with finite second moment (the g's depend upon F, of course). ODvoretsky

also showed that if F has zero mean and unit variance then 0.32 ... 5_Bn/nk <
4.06 ... for n sufficiently large, and conjectured that lim 8n/nk existed.
This conjecture was proved independently by Taylor (1968), Walker (1969), and
Shepp {1969), who found 0.8399 ... as the limiting value. They pointed out
that considered for large values of n, this problem would be equivalent to its

Wiener process analogue, the special case where for 0 < t <
glx,t) = x/t ;
the optimal solution (g,C) for this problem fs given by

€= {(x,t): x :_ut% v 0 <t <)

oxt) = (1 - a2)t %e(w)/o(w) for (xst) ¢ C,

where w = x/tk and o« = 0.8399 is the solution of ada) = (1 - a2)é(a) .
The fintte horizon varfation of this problem, 1n which the gambler is
permitted to observe at most N terms of the sequence X], XZ""’ has been

considered by J. L. Snell & H, Tisdale (1978). A normalfzed form of the
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continuous time version of this problem leads to the special case where for

0<t<1,

(2.12) g{x,t) = x/t ;

it 1s this particular version of the Sn/n problem which will be considered here.

In the remainder of this section we briefly preview the rest of this
paper. In Section 3, the backward induction methods for the normal and binomial
discrete time versions are described together with alternative versions of
continuity corrections. In Section 4, the examples we have presented are
discussed to illustrate and evaluate the continuity corrections. The modified
Anscombe problem, Example 2.5, for which the solution i; known illustrates the
case of a symmetric region where the boundary is monotone. Example 2.6, Van
Moérbeke‘s gambling problem, illustrates the case where truncation may be used
to capitalize on one-sided stopping regions. Example 2.7 {1lustrates the case
where the boundary 1s not monotone.

In Section 5, the problem of computing solutions over large ranges of s
values is addressed by a technique of changing increments in s. This method is
used to present numerical results for the important classical sequential
analysis problem, Example 2.1, and one-armed bandit problem, Example 2.2.

Finally in Section 6, a new example is introduced. This is the Anscombe
problem with ethical cost considerations. It §s new in two senses. It has not
been treated before in the literature. It is different from Examples 2.1 to
2.7 in that the posterior risk on stopping depends not only on the current
position of the Hiene( process but also on the past history. This problem
can still be solved numerically by backward induction or it can be transformed

into a stopping problem of the same form as the others.

13

3. NUMERICAL TECHNIQUES

| In this section we describe the techniques to be employed in obtaining
numerical descriptions of the solution of the general optimal stopping problem
for a zero drift Wiener process in the (y,s) scale defined at the beginning of
the previous section. As already indicated, the basic 1dea is straighforward:
the process Y(s) which is a Wiener process in the -s scale, is approximated by
a discrete time process, and backward induction is used to solve the optimal
stopping problem for this new process. Using asymptotic results concerning
the relation of the solutfon of tpe discrete time problem to the solution of
the Wiener process problem, the discrete time solution can then be adjusted

to provide an approximation to the solution of the conti&uous time problem.

A natural approximation to the continuous time problem results if one
considers the discrete time problem where one is permitted to stop only on the
discrete set of possible values of s, (s] +ia, 1=0,1, ...} . Nhilg the
value of s decreases by & between these successive possible stopping times,
the process Y(s) changes by a normal deviate with mean 0 and variance a; in
effect, the Wiener process 1s being approximated by an appropriate sum of
independent norma] random variables. At any point (y,s) where s corresponds to
a permissible stopping time, the choice between either stopping at this point
or continuing on to the next permissible stopping time and proceeding optimally
thereafter 1s made on the basis of wﬁich of d(y,s) or E[&(Y(s- A),s - a)|Y(s) =y}
is smaller. Thus, the backward induction algorithm which yields the optimal

solution to the stopping problem for this discrete, time process is specified by

aly.s) = dly,s) fors = s, .

(3.1) . "
= min[d(y,s), E{d(y + Za*, s - 4)}] for s > 5,



where Z represents a standard normal deviate.

This approximation is a natural one since the discrete time problem is

embedded within the continuous time problem; the former corresponds to the

special case of the latter where one is permitted to stop only on the discrete

set of vaiues of s given by (sl +ia, 1=0,1, ...}.

From this point of view

it is obviols that the continuous time problem is more favorable. For a sequence

of values of A approaching 0, the solution of the discrete time problem (both

the continuation region and the risk) would approach that of the continuous

time

problem in a monotonic fashion.

Note that the evaluation of the expectation appearing in (3.1) would

require a numerical integration for which purpose the y axis would also be

discretized.

Thus, in practice, the backward fnduction is carried out on a

grid of (y,s) points each of which is classified as efther a stopping or

continuation point during the course of the computatfon.

How would one use the results of the backward induction algorithm (3.1)

to obtain an approximation to the boundary ;(s) of the continuation region for

the continuous time problem? Chernoff (1965b) presents a detailed investigation

of the relation of this discrete time problem to the continuous time problem;

the results Tead to two distinct methods of approximating the continuous time

boundary ;(s).

The first method consists of simply adjusting the boundary of the optimal

continuation region for the discrete time problem; this boundary is determined

by the "break-even" points ;A(s) at.-which d(y,s) = E(&(y + ZA*. s - 4))

Chernoff (1965b) has established that

(3.2)

;(&) = ;A(s)_ikak + ofa

),

15

where the sign is determined so as to make the continvation region for the
Wiener process problem larger and k = -c(k)//7;'= 0.5826, where ¢ is the
Riemann zeta furction. The first method should then be clear: For a (reasonably
small) value 4, carry out the backward induction algorithm and obtain the
break-even points ;A(s) at each fixed value of s. Then use the correction
implied by (3.2) to approximate y(s). Note that since the entire backward
induction is carried out on a grid of (y,s) points, the break-even points 9A(S)
would only be obtained approximately, presumably by some interpolation or
extrapolation scheme (Day, 1969, provides the details of a scheme for car}ying
out the backward induction together with an 1nterbolation scheme for approx-
fmating the break-even points for the discrete time version of Example 2.3).

He shall call this the adjustment method and label it A,

For the second method, the break-even points need not be approximated.
Chernoff (1965b) has established that, in the neighbourhood of the boundary
of the optimal continuation region for the continuous time problem, the
difference between the optimal risk for the discrete time problem and the cost
for stopping behaves asymptotically (as o + 0), at every fixed value of s,
like a simple function which depends upon the (unknown) location of the
continuous time boundary at this value of s and whose form he provides; indeed,
it is this result which leads to the relationship (3.2) . This result forms
the basis of the second method: For a (reasonably small) value of a, carry out
the backward fnduction algorithm to obtain the optimal risk for the discrete
time problem at each grid point. Then, a{ each fixed value of s, fit the known
values of the difference between the optimal risk for the discrete time problem
and the cost for stopping at those grid points in the interior of the continuation
region (but adjacent to the boundary) to the relationship provided by Chernoff



(1965b) in order to approximate (or, more precisely, to extrapolate to) the
location of the continuou$ time boundary (further details for a closely related

scheme will be provided below). We shall call this the extrapolation method

and label it E.

While the discrete time process with normal increments is the most natural .
approximation to the Wiener process, we propose to use the simpler approximation
in which the Wiener process Y is replaced by the simple random walk process
where Y(s - ) = Y(s)j;A%. each with probability 1/2. This approximation to the
Wiener process results in a very simple corresponding backward induction
algorithm; the standard normal deviate Z in (3.1) is replaced by a random

Jariable which is + 1, each with probability 1/2, leading to the algorithm

d(y,s) = dly.s) for's = s,
(3.3)
Y

min[d(y.S).(&(yM", s-a)+dly-a% s-a)1/2]  fors > 5q-

Obviously, this algorithm is considerably simpler to implement than that
specified by (3.1) which requires a numerical integration to evaluate the risk
at each grig point (y,s). As was the case with the previous approximation,
the backward {induction 1s_carried out on a grid of (y,s) points; in the present
approximation, however, the discretization of the y-axis is necessarily related
to the discretization of the s-axis. Whereas the Wiener process was previously
being approximated by the s;m of its increments, in this simpler approximation
the increment of the Niene} process is itself replaced by a Bernoulli random
variable. While the second moment of the Bernoulli variable is chosen to match
that of the increment it is re?]acing. the higher even moments do not match.

Tn general, therefore, it is not clear whether this discrete problem is more
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or less favorable than the Wiener process broblem. Further, while the solution
of this discrete time problem (both the continuation region and the risk) would
also approach that of the continuous problem as A approached 0, one would not
necessarily expect the behavior to be monotone.

Chernoff & Petkau (1976) have investigated the relation of this discrete
time simple random walk problem to the original continuous time problem. They

establish that the appropriate analogue of (3.2) for the present case is

(3.4) yls) = y,(s) + 0.50%+ o(s"),

-and also provide the form of the simple function which describes, for each

fixed value of s, the asymptotic (as A + 0) behavior of the difference between
the optimal risk for this discrete time problem and the cost for stopping in
the neighbourhood of the boundary of the optimal continuation region for the
continuous time problem. These results enable the same two general approaches
described above of approximating the continuous time boundary to be used in
connection with the backward induction algorithm (3.3). Further detail§ of
these methods in the context of this discrete time simple random walk
approximation will now be provided. For simplicity of discussion, we will
suppose throughout the remainder of this section that we are in the case of a
one-sided problem where the optimal continuation region for the continuous
time problem is given by C = {{y,s): s > 5 and y < ;(s)) , where ;(s) is
monotonically increasing in s.

To implement the adjustment approach, the break-even points iA(s) at

which d(y,s) = d*(y,s) where

(3.5) d* (y,s) = (dy+4a%, s-a) + dy- 4%, s-a)1/2 .
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must be approximated at each fixed value of s ¢ {s] +ia:i=1,2, ...} .
In carrying out the algorithm (3.3) at s, one would discover the grid level
= yo(s) on the y axis determined by the condition that the grid points
(yo - jA%. s) = (yj.s) say, be classified as continuation points (d* < d)
for J = 0,1, ... and as stopping points (d* > d) for j = -1,-2, ... . The
grid level yo(s) might be called the higheét. or last, continuation level
at s; the sequence of highest continuation levels would be nondecreasing
and a naive aﬁproximation to }A(s). the break-even point at s, would be
provided by yo(s). Note, however, that in the case of this discrete time
random walk approximation, the gria being employed has a vertical spacing
of Ak which is coarse compared to the horizontal spacing of a; for reasonably
smail values of 8, therefore, as s increases successive values of yo(s)
would often be identical and this naive approach would produce a serfes of
steps as an approximation to the gradually increasing sequence of break-even
points. One might attempt to smooth the sequence of levels ¥o(s) to form
an improved (hopefully) approximation to the sequeﬁce of break-even points
;A(s). This could be accomplished by the crude approach in which }A(s) is
approximated by yo(s) only at those values on the s grid where the last
continuation level changes, that is, yo(s) > yp(s - 8); line segments
connecting these approx%mat‘on points could then be used to approximate
;A(s) at any intermediate value of s. The approximation can then be adjusted
by 0.5A5 to provide the crude adjusted estimate of 9(5); this method is
labelled CAT

The above method of approximating the break-even points may seem crude
since the computed values of the risk at the grid points are completely

ignored, except that they are employed to classify the grid points as either

stopping or continuation points . In carrying out the algorithm (3.3), the
value of d-d* is determined at each grid point; at each fixed value of s then,
the values of d-d* at the grid points could be used in an interpolation to
approximate the break-even point }A(s). The simplest such scheme would be a
1inear one based on the values of d-d* at yo(s) and y_](s) = yo(s) + Ak. the
grid levels between which it is known that the break-even point QA(S) lies.
Alternately, one might employ%a quadratic interpolation scheme based on the
values of d-d* at either y](s). yo(s) and y_](s) or yo(s). y_](s) and y_z(s).
Day (1969, p.306) points out that for two-sided problems with normal
increments where d-d* is symmetric and convex (in y at each s) and has a
monotone decreasing second derivative, these two quadratic interpolations
will actually yield an underestimate and an overestimate respectively of the
break-even point 9A(s). This suggests, and we shall use, the average of the
two Interpolated values as the approximation. The estimates of §A(s)
described here can be adjusted by O.SAk to give variations of A which may be

called LA and QA for linear adjusted and quadratic adjusted.

Each of the above adjustment methods involves adjusting an estimate of
;A(s). It is possible, at considerable computational expense, to approximate
the points }A(s) more precisely by repeating the discrete backward induction

with each of a series of related grids. By using the grid

(3.6) (G.S:s=sg+in, ymctkah i =01, o, k=04, ...)

with many fractional values of C/A% (without Toss of generality, we assume

0<cc< A%), one can estimate the break-even points QA(S) arbitrarily well.



We now consider EX, an analogue of the extrapolation method E, which

bypasses the explicit calculation of }A(s). Defining

Dly,s) = dly,s) - d(y.s) ,
where d is the optimal risk in the discrete time problem (the function
evaluated by the algorithm (3.3)), the results of Chernoff & Petkau (1976)

indicate that for the one-sided problem under discussion, at each fixed value

of s, one should expect
(3.7) D(y(s) + vat,s) = - H(y(s),s)r(v)a

where the function r(v) is given by

r(v) =0 for v > -1/2 ,
(3.8) 2 2
= v® - inf(v + j) for v < -1/2 ,
J
and
(3.9) H(y,s) = % dyy(y.S) - d.y.s)

is the "rate of losing". Suppose then that the algorithm (3.3) has been
carried out and we wish tq approximate }(s). At those values on the s grid,
the value of D{y,s) is available at yj(s) for j =0, V1, ... (of course,

D=0 at yj(s) for j = -1,-2, ...). If we represent
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(3.10) Yols) = yls) + v,

°

we only require an approximation for v. Fitting the known values of D at

yo(s) and yl(s) to the re]atign (3.7) leads to

2 D(yy(s)es) = ar(v). ,

(=]
#

(3.11)
E D(y](s),s) = ar(-1 +v)

—
|

where the unknown constant a = -H(;(s).s) . Assuming as suggested by (3.4)

that - 15 <vs - & , (3.11) becomes

D= av? - (v+ 1)) =-aleve 1),
(3.12) ‘
= a{(v - ])2 - (v + 1)2) = -a(dv) .

Solving the system (3.12) leads to the approximations

a-= —D]/4v >
{3.13)

<
I

= 01/2(200 = Dl) B

this value for v is then substituted into (3.10) to yleld the extrapolation
estimate of }(s); this method is labelled EX. Note that in the special case
where yo(s) is itself a break-even point, D0 = 0 and this extrapolation scheme

calls for estimating ;(s) as yo(s) + 0.5A¥, while in the case Do< 0 the scheme
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calls for a correction which is Targer than O.SA* ; these properties agree
with what is suggested by (3.4).

In summary, the technique which we propose to employ to solve the general
optimal stopping problem for a zero drift Wiener process in the (y,s) scale defined
earlier is as follows: The Wiener process Y(s) is approximated by a discrete
time simple random walk process and backward fnduction is employed to solve the
optimal stopping problem for this discrete time problem. The solution of the
discrete time probiem is then adjusted by one of the methods CA, LA, QA or EX
to approximate the solution of the Wiener process problem. In the above, details
of the methods of adjusting the discrete time solution have been discussed in
the context of a one-sided problem with a monotone increasing boundary. It should
be clear that the same methods can be used in problems with more complicated
types of optimal continuation regions. Further, it should not be surprising that
exactly the same techniques can be employed to solve the general optimal stopping
problem for a zero drift Wiener process in the (x,t) scale defined earlier.

The reader will already have noticed that while we have dwelt at some
Tength on adjusting the boundary of the optimal continﬁation region for the
qiscrete time problem to provide an improved approximation to the boundary
of the optimal continuation region for the continuous time problem, nothing
has been said about how one might similarly adjust the optimal risk. In order
to do so, a relationship between the discrete and continuous time risks

analogous to the relationship between the boundaries given by (3.4) would
be necessary; unfortunately, no such relationship is known at present.

In the next section, these techniques will be 1llustrated on some of the
examples described in Section 2; the behavior of the optimal discrete time risk

as an approximation (unadjusted) to the optimal continuous time risk will also
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be considered. We remark that for certain problems there are a number of ways
of reducing the labor involved in carryfng out the backward induction algorithm
(3.3); these typically depend upon the particular problem under consideration

and will be discussed as the opportunity arises in the next section.



4. TLLUSTRATION OF TECHNIQUES

In this section we illustrate the behavior of the general technique described

in the previous section in the context of some of the examples presented in
.Section 2; each example has its own particular features, but the basic algorithm
is in every case the same. While application of this technique to derive refined
estimates of the optimal boundary and risk for the continuous time problem would
require an exorbitant amount of computation, nevertheless, it is extremely easy
to program and relatively coarse grids on the s axis yield surprisingly accurate
estimates.

The (y.s) problems which have been described all have the property that the
interval of possible values of s is infinite. For these statistical problems, the
region of large values of s is of particular interest since it corresponds in
each case to the "beginning" of the problem where little information is yet

available. The question of how one obtains estimates in a practical mamner for

large values of s will be discussed in the next section; in this section we restrict

attention in each case to the interval 100 > s > Sy

We begin with the examples for wﬁich exact solutions are known; these permit
a careful examination of the convergence of the estimates as the grid spacing is
refined. We then discuss the implementation of the techniques for the other

examples and present a few results.

Exampie 2.5. Modified Ansconbe problem. This problem is symmetric in y with

optimal continuation region C = {(y,s): }y| :};(s). s > 1), where the monotonically
increasing boundary y(s) is specified by 1 - o(;(s)/sk) =§71y2 Note that

;(s) ‘(n/z)*(s - 1) as s + 1 and ;(s) = (2s log s)lj as s + e,
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Consider carrying out the algorithm (3.3) to determine the solution of
the corresponding random walk problem, using a grid of the form {3.6) for
some value of c. The computation proceeds in stages: At the fnitial (zero-th)
stage, the values of & are assigned at all points of the grid corresponding
to the final value of s, namely s = sy " 1. At the kth stage, a has already
been evaluated at all points of the grid corresponding to the values of
s=1+J5 forj=0,1, ..., k-1; & {s then evaluated at all points of
the grid corresponding tos = 1 + ka . In the course of this computation
which yields the optimal risk for the random walk problem, each of the
individual grid points is classified as either a stopping point or a continuation
point for the random walk problem. Thus, the sequence of highest coniinuation
levels corresponding to the partfcular grid being employed are determined and
any of the methods described in the previous section can be employed to obtain
an approximation to the continuous time boundary ;(s).

While this computation is straightforward, there are a number of fairly
obvious modifications which reduce the amount of computation involved in
carrying out the algorithm (3.3) for this particular problem. First, due to
the symmetry, we have d(-y,s)=d(y,s) at each s. Using a grid which is
symmetric about y = 0 (use of ¢ = 0 in (3.6)) then allows attention to be
restricted to the positive y half-plane. Second, 1t is fntuitively obvious and
easy to show that the sequence of break-even points for the random walk problem
inherits the monotonicity property of the continuous time boundary ;(s). Thus,
at stage k where s = 1 + k-a, the grid levels O.Ak. ZAB, cees yo(l + (k - Da),

where yo(] + (k - 1)a) is the highest continuation level corresponding to

s =1+ (k - 1)a, are known to be in the continuation region. At stage k then,
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& can simply be assigned the value of d* (sée (3.5)) at these grid levels. The
minimization indicated by the algorithm (3.3) néed be carried out only at
successively higher grid levels until the first stopping point is encountered;
all higher grid levels will also be within the stopping region for the random
‘walk problem. In fact, for reasonable values of A, the minimization need be
carried out only at the‘single grid level y_](] +(k - 1)a) = yo(l + (k - 1)a)
+ A% since if the highest continuation level does change at stage k, 1t will
change from yo(1 + (k - 1)a) to y_](l + (k - 1)a).

These computations have been carried out for a sequence of grids specified
by decreasing values of the grig spacing A. Since the only apparent pattern

in the size of the errors, e = ; - ; of estimation of the continuous time

boundary ;(s) was a very slight tendency for the errors to decrease as s increased,

an overall summary should be.an adequate description. Such an overall summary
for each of the methods CA, LA, QA and EX is provided in Table 1.

Examination of Table 1 reveals that while methods CA and QA underestimate
the correction required to approximate the continuous time boundary for coarse
grid spacings and overestimate it for the (more reasonable) finer grid spacings,
method LA overestimates the correction for all spacings considered. Method EX
underestimates the correction for coarse grid spacings, but this bias begins
to disappear as the spacing is refined. Perhaps the most important observation
to be made about Table 1, however, is the apparent relationship between the size
of the errors made and the grid spacing for method EX: refining the grid spacing
in s by a factor of 4 appears to reduce the size of the errors, as measured by
either Ave (|e[) or Max (|e|), by a factor of between 3 and 4 (note that if the

factor truly is 4, this implies the size of the errors is proportional to the

grid spacing in s). Since refining the grid spacing in s by a factor of 4 involves
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8 times as much computational work, this leads to the rough estimate of 2.8 to
3.7 times as much work required to reduce the size of the errors by a factor
of 2 when method EX is employed. Although it is clear that the size of the
errors made by the other methods will also decrease as the spacing 1s refined,
the agtual behavior is unpredictable since no such empirical relationship is
obvious for these other methods. The table clearly indicates that while
methods CA and EX should not be used with coarse grids, these become the
preferred methods with the (more reasonable) refined grids. It should be noted
that all four methods provide excellent approximations to the continuous time
boundary ¥(s) when reasonable grid spacings are employed.

The optimal risk for the discrete time simple random walk problem was
also examined as an approximation to the optimal risk for the continuous time
Wiener process problem. A cryde summary of the errors in this approximationl
is presented in Table 2. This summary indicates that refining the grid spacing
in s by a factor of 4 leads to a reduction in the size of the errors by a
factor of between 3 and 4 also. Further, the table clearly indicates that the
risk in the discrete time simple random walk problem provides an excellent
approximation to the optimal risk for the continuous time problem, even for
quite coarse grids.

We remark that in contrast to the continous time problem, the random walk
problem under consideration here has the property that the continuation region
is prematurely truncated; that is, there exists an interval on the s-axis,
(].Sf(A)), on which none of the grid points will be classified as continuation
points. An easy calculation indicates that, for small values of a, the grid
point y =0, s = 1 + ka will first (as successive stages of the backward

induction are carried out) belong to the continuation region for the random
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walk problem when k = (ZHA)-B + 1+ 0o(1). While this represents a substantial
number of successive stages only for very small values of o, this feature could
also be incorporated to make the computation more efficient for such small

values of A.

Example 2.6. Van Moerbeke's ganbling problem. This gambling problem has a
one-sided continuation region C = {(x,t): x > x(t), t < 1} with monotenically
increasing boundary x(t) = -a(1 - t)g. where a = 0.5061 is the solution of
a¢{a) = ¢(a). Although this problem is formulated in terms of the Ffunction

" g(x,t) which specifies the reward received by the gambler upon stopping at (x,t)
and is given in (2.10), the problem can be equivalently formulated in terms of

the stopping cost function

d(xlt) r 'g(xrt)

The appropriate modification of the algorithm (3.3) is then given by

&(x.t) &(x,t) fort =1,
(4.1) ' ‘

minfd(x,t), [&(x+A¥.t*A);-a(x-Ak.t*A)1/2] for t < 1.

While the first few stages of this algorithm can be carried out analytically
and lead to break-even points ;A(l -8) =0, ;A(I-ZA)= (—2*33)Ak = -0.268A5,
;A(l-3A)= -(4’105)A5/2 = -0.419Ak, and so on (note that applying the %AH
correction to these exact break-even points would lead to estimates of the
continuous time boundary of x(1-8) = -0.5008", x(1-28)= -0.543(28)",
;(1-3A)=-0.531(3A)B. and so on), these exact calculations become unmanageable

after a few stages.
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Carrying out the algorithm (4.1) proceeds similarly as in the case of
Example 2.5 and any of the_methods described in the previous sectfon can be
employed to obtain an approximation to thecontinuous time boundary ;(t).

The present problem, however, has its own special features. For the contin-
uous time problem, {(x,t): x > 0, t < 1} C; this fact would be known even
if the exact solution were unknown since the “rate of winning®,

H(x,t) = ¥g_ (x,t) + g (x,t) > 0 for x >0, t < 1. Since it can easily be
shown that the sequence of break-even points for the random walk problem
inherits the monotonicity property of the continuous time boundary ;(t). and
since ;A(l - 4) =0, the above result is algo true for the discrete time.
random walk problem. Again, it can be shown that the minimization indicated
by the algorithm (4.1) need only be carried out at a single grid level at
each stage of the computation.

The fact that a{] grid points above the x axis are known to be continuation
points can be incorporated to reduce the amount of computation required in
car?ying out the algorithm (4.1). Consider a particular path of the random
walk process originating at the point (x,t) = (c + Ak. 1 - na). The path of
the process could hit the grid level x = ¢ for the first time at :
t=1-(n-1)a, V- (n-3)a, ...; alternately, the path ceuld remain above
the 1ine x = ¢ all the way to t = 1. Since all che grid points (c, 1 - ta)

for £ =1, 2, ... are continuation points, we have the relation

o n o o -
(4.2) d(c+Ak.l-nA) = Ilpmd(c.l-(n-m)A) + kz?" kd(c+kA".l)
m= =]"?*

where P is the probability that a simple random walk starting at the origin

first passes through the Tevel -1 at the mth step, and 9,k is the probability
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that a simple random walk starting at the origin stays above the level -1 for

the first n steps and achfeves level k - | at the nth step. Feller (1968, p.89,
Theorem 2) provides ' '

= m -m
Pu = ﬁ'[(m+l)/2]2 for m odd ,

= 0 for m even ;

for m positive, P2 = mpm/(m + 3) with Py = 1/2 and Po.= 0. Feller (1968, p.73,

Ballot Theorem) alsc provides

U,k = 0 for n + k even ,

k' n+l -
mT [(n+k+l)/2 ]2 u otherwise .

The relation (4.2) provides a slight modification for carrying out the

ba?kward induction which we will call the truncation modification. At the

initial (zero-th) stage, that is at t= 1, the risks are specified by d(x,t).
At any subsequent stage, corresponding to t = 1-na say, compute the risk at
the grid level x = ¢ + 2% by means of (4.2). The risks at the grid levels
x=c+ kAk for k = 0, -1, -2, ... can be computed using the algorithm (4.1)
as described above.

Returning for a moment to the continuous time problem, we have already
pointed out that changing the‘stopping reward function by adding to it any
solution of the backward heat equation leaves the optimal continuation region

unchanged. For present purposes, it is convenient to consider the new stopping

K}

reward function g'(x,t) defined by

9'(x,t) = g{x,t) - 2(1 - t + x?) ,

or the new stopping cost function d'(x,t) = -g'(x,t). MNote that d'(x,1) = 0
for x > 0. The algorithm (4.1) can be employed to obtain the optimal risk
J'(x.t) for the discrete time random walk problem corresponding to this
version of the continuous time problem; in this case the relation (4.2)
simplifies to

(8.3) d(c+a,1-m)-= '{']pmd“-(c.l - (n - ma)
.\3 m'_'

which results in a reduction in the computation involved in carrying out the
algorithm. Limited empirical evidence suggests that the truncation modification
reduces the computation time required by a factor of approximately two in

those cases where the simplification (4.3) obtains.

In the general case, the transformation

g'(x,t) = g(x.t) - [.., (t,- e ¢((X'-X)/(t,-t)'“’)g(x'.t])dX'
X
1

produces a new stopping reward function with the same optimal continuation
region and satisfying g'(x,t]) =0 for x2x;. Unless this integral can be
explicitly evaluated, however, no real simplification obtains. For our special
function g In (2.10), this integral {with x; = 0, ty = 1) does not coincide with
2(0 -t + xz). but the difference §s simply a solution of the backward heat

equation.

The computations have been carried out for a sequence of grids specified
by decreasing values of the grid spacing; 1in all cases, grids of the form

(3.6) with ¢ = 0 were employed . Since there was no apparent pattern in the
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size of the errors e = x - x of estimation of the continuous time boundary x(t),

an overall summary of these errors should be adequate. Such an overall summary
for each of the methods CA, LA, QA and EX appears in Table 3.

TJable 3 reveals that while methods CA, LA and QA always overestimate the
correction reqqired to approximate the continuous time boundary (except at the
coarsest grid spacing in the case of CA), such a severe bias is not apparent
with EX although the method does tend to underestimate the correction required.
The relationship between the size of the errors made and the grid spacing is

quite clear for methods CA, LA and QA: refining the grid spacing in s by a

factor of 4 appears to reduce the size of the errors by a factor of 2; for method

EX the reduction factor appears to be about 3. While all methods provide

excellent approximations to the continuous time boundary ;(t) when employed with

reasonable grid spacings, the preferred method would appear to be EX.

A crude summary of the errors in the approximation of the continuous time
risk by the optimal risk in the discrete time random walk problem is presented
in Table 4; it is apparent that-this approximation is excellent even for
relatively coarse grids. Further, it is clear that refining the grid spacing
in t by a factor of 4 leads to a reduction in the errors by a factor of 4. It
is interesting to note that in this example it appears the various discrete
Fime random walk problems are uniformly less favourable than the continuous
time problem. Examination of isolated grid points indicates that the risk
in the discrete time problem converges monotonically to the continuous time
risk. These observations are in contrast to the situation in Example 2.5.

Recall that the methods CA, LA, and QA proceed in two stages: first the
break-even points for the discrete time random walk problem are approximated;

these are then adjusted by O.SAIi as suggested by the asymptotic relationship
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(3.4). At an early stage of these investigations, the performance of this

adjustment of 0.5Ak

was investigated in the context of Example 2.6. For
a fixed grid spacing 4, the results of carrying out the backward induction
with grids of the form (3.6) with ¢ = 0(0.0001)4 were combined to locate
the break-even points to within an error of 0.0001 at the expense of a
very substantial amount of computing . The errors in the approximation of the
continuous time boundary by both the “raw" break-even points and the "adjusted"
break-even points (adjusted = raw - O.SAB) were then evaluated. The results
for a few grid spacings are summarized in Table 5. Note that Ave(|e}) and
Max(|e|) are similar throughout the table; this indicates that the errors are
roughly constant at different values of t. As expected on the basis of (3.4),
the errors with the raw break-even points are very close to O.SAH. While the
adjustment of O.SAk is slightly too large for each grid spacing, this error
seems to decrease faster than 0.5 Ak as the grid spacing decreases (393/5000 =
0.079, 156/2500 = 0.062, 58/1250 = 0.046). Comparing these results to those
in Table 3, it becomes clear that, for this problem, while method LA does not
estimate the break-even points very accurately, QA does reasonably well,
particularly for the coarser grid spacings. Method CA always underestimates
the break-even points (for this problem and generally) and this compensates
for the fact that O.SAH is an over-adjustment here. It is important to note
that the errors incurred with method EX are very similar to the errors
reported in Table 5 (compare especially Max(le|)): for this problem method
EX does as well as any possible method based upon adjusting estimated
break-even points.

These methods can be adapted for all of the examples we have discussed.

The methods employed in Example 2.5 apply without modification to Example 2.3.
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A slight modification was required for Example 2.4; attention could not.be
resticted to the positive y half-plane since the problém was not symmetric
in y. Detailed results for these examples have already appeared in Chernoff
& Petkau (1981) and Petkau (1978) respectively. In the remainder of this

section we examine the behavior of these methods in Examples 2.1, 2.2, and 2.7.

Example 2.1. Sequential apalysis problem. This problem is

symetric in y with optimal continuation region
C = {(y,s): |yl s } (s}, s 20}. Asymptotic expansions for the
monotonfcally increasing boundary demonstrate that y(s) = %s? as s + 0 and
}(s) = (3s Tog 5)5 as s + =, The methods emp1o}ed in Example 2.5 apply
without modification, and the random walk version of this problem is also
naturally truncated; an easy calculation indicates that, for small values of
A, the grid point y = 0, s = ka will first belong to the continuation region
when k * Z‘IZA-?'., + Z’Sﬁ'n'vzls'% + .

Although the desired computations can be carried out in a straightforward
manner, it'{s more difficult to examine the performance of the methods since
" the exact solution to the continuous time problem 1s unknown. To i1lustrate
behavior as the grid spacing decreased, the approximatfon to the continuous
time solution provided by a given method with the most reftned grid spacing
was taken as a baseline for that method. The deviatfon of the approximation
obtained with a less refined grid spacing from this baseline is summarized
in Table 6. The disparity among the approximations obtained by the different
methods with each spacing employed is summarized in Table 7: Table 7 indicates
clearly that, in this example, the approximations to the continuation regions
for the continuous time problem produced by methods LA and QA are strictly
larger than that produced by EX; the same tendency can be noted for CA.

Relative to the size of the grid spacing, the methods CA, QA and EX agree quite
well for the smaller grid spacings. Table 6 indicates that while methods CA
and EX 1mprove drama;ically as tﬁe spacing 1s refined, the improvement s less
dramatic for LA and QA. Overall, the patterns here appear to be very similar
to those observed in Example 2.5.

) The convergence of the optimal risk in the random walk problem as the
grid spacing decreased was also examined. The optimal risk with the most
refined grid spacing was taken as the baseline. The results as summarized in

Table 8 and are not unlike the results obtained in Example 2.5.

Example 2.2. One-armed bandit problem. This problem has a one-s{ded contin-

uation regfon C = ({y,s): y > ;(s). s > 1) with a monotonically decreasing
boundary ;(s). Asymptotic expansions demonstrate that ;(s) - -u(s-l)g as

s + 1, where a = 0.63884 is the solution of (02 - 1)¢(a) + a¢(a) = 0, and

;(s) ~ -(2s logsf’ as s + =, The first few stages of the backward induction
algorithm lead to break-even points }A(l +AY=0, QA(I* 28) = -AB(1+2A)/(3+2A).
9A(l+3A) = -ﬂnk(|+A)(]+3A)/(7+ISA*6A2).and so on. Addition of any solution

of the forward heat equation to the stopping cost d(y,s) given in (2.4)

leayes the optimal continuation region of the continuous time problem unchanged.
Upon converting to the new stopping cost function d'(y,s) = d(y,s) + y, for
which d'(y,1) = 0, the methods employed in Example 2.6 apply to this example
without modificstion. The results for this example are summarized in Tables

9, 10 and 11. Overall, the results are quite similar to those for Example 2.1.

Example 2.7. The Sn/n problem with finite horizon. Since the "rate of

winning" for this gambiing problem is positive for negative x, this region

is contained within the optimai continuation regfon. As would be anticipated,
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this problem has a one-sided continuation region C = {(x,t): x < ;(t).
0 < t < 1}; asymptotic expansions demonstrate that ;(t) ~ uotlj as t + 0,
where ag = 0.83991 is the solution of a¢(a) + (a2-1)¢(a) = 0, and

0.63884 is the same constant which

;(t) - m](l-t)!i as t + 1, where a;
appears in the asymptotic expansion of the boundary for the one-armed bandit
problem. The first few break-even points for the random walk problem are
given by x,(1-8) = 0, x,(1-28) = a%(1-28)/(3-28), x,(1-3a)= 48"(1-2) (1-3a)/
(7—\5A+6A2). and so on. Since the sequence of break-even points will not be
monotone, sTightly more detailed calculations are necessary when carrying out
the backward induction than was the case in Example 2.6. However, converting
to the new stopping reward function g*(x,t) = g(x,t) - x, for which

g'(x,1) = 0, allows the general technique employed in Example 2.6 to be used
here also. The results for this example are summarized in Tables 12, 13 and
14. While the results are qualitatively similar to those in the previous
examples, a few features should be noted. Since the optimal boundary is
dome-shaped, it is clear that method CA, which approximates this curved surface
by a flat surface in the region of the maximum, must do poorly for coarse
grid spacings. While both LA and QA produce smooth approximations, method

i EX produces approximations which occassionally exhibit a lack of smoothness
in the neighbourhood of values of t at which the highest continuation level
changes; this tendency is most pronounced with coarse grid spacings but
persists even with refined grid spacings. Further, since the optimal risk
approaches infinity as t + 0, the deviations summarized in Table 14 become
large at the smaller values of t; indeed, the deviation which is largest in
magnitude in each case occurs at t = 0.04, x = 0.1 . 1In spite of these

limitations, the results presented again indicate that the methods perform
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quite well. In Table 15, we p;esent an abbreviated table of the approximation
to the boundary of the optimal continuation region'for the continuous time
problem obtained from the computation with the most refined grid spacing. Note
the accuracy of the 1-term asymptotic expansions given above as t + 0 and

t+1.
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5. PRACTICAL IMPLEMENTATION IN STATISTICAL PROBLEMS

The continuous time problems described in Examples 2.1-2.4 arise from
statistical problems and share the propertyvfhat the range of possible s
values s infinite. In this section we indicate how the numerical methods
which have been described can be employed to obtain estimates of the stopping
boundary and the Bayes risk for these problems in the region of large values
of s. The properties of the proposed technique will be examined in the
context of Example 2.5, the modified Anscombe problem, and summarfes of the
estimates obtained for both the sequential analysis problem and the one-armed
bandit problem will be presented.

While the results of the previous section establish that estimates obtained
with the numerical methods are accurate provided that small grid spacings a
are employed, the use of a small grid spacing in a backward induction designed

- to obtain estimates for large values of s, say out as far as s = 106. would
require an exorbitant amount of computer time. On the other hand, while the
use of a large grid spacing will allow the determination of reasonably good
estimates at large values of s, the estimates obtained at smaller values of s
would typically be poor. A hybrid technique which uses a small grid spacind
at the initial stages of the backward fnduction and larger grid spacings at
larger values of s is required.

A naive techﬁique of this sort would consist of carrying out a number of
separate backward inductions, the first with é very small value of .4 and
successive ones with successively larger values of Ao. Each of these backward
inductions would begin at Sye the initial value ;f s, and if each was carried
out to the same number of stages, estimates would be obtained in successively

larger overlapping intervals of s. The results of the separate backward

inductions could then be combined; at any fixed value of s, the estimates would
be obtained from the backward induction involving the smallest value of A to
reach this value of s. Thus, in different intervals of s, the estimates of the
Bayes risk and the stopping boundary for the continuous time problem are the
estimates obtained in different approximating discrete time simple random walk
problems. While this simple technique seemed to lead to adequate estimates in
Petkau {(1978), estimates at large values of s might be unnecessarily crude
sincg these are obtained by backward inductions which use fairly large values
of A even at the initial stages.

A simple way of avoiding this difficulty is to carry out a single backward
induction that incorporates a changing step sfze as it proceeds. The first
phase of this backward fnduction might execute M] stages corresponding to a
very small grid spacing 8qs from the initial value 53 to s]+M|-Al = s; say,
and the second phase might execute Mz stages corresponding to a larger grid
spacing 85, from the initial value for this phase of s, <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>